way-to-architect
  • 前言
  • Java
    • Java关键字
      • Java中四种修饰符的限制范围
      • static和final
    • 容器
      • 容器概述
        • 容器:综述
        • Iterator原理及实现
        • fast-fail机制
        • 比较器Comparator
        • Collections工具类
      • List
        • List综述
        • ArrayList原理分析
        • ArrayList在循环过程中删除元素的问题
        • 常用的小技巧
        • CopyOnWrite
      • Set
        • Set综述
        • HashSet
        • LinkedHashSet
        • TreeSet
      • Queue
        • Queue综述
        • ArrayBlockingQueue实现原理
        • LinkedBlockingQueue实现原理
        • 高性能无锁队列Disruptor
      • Map
        • Map综述
        • HashMap
          • HashMap实现原理
          • HashMap中的位运算
          • HashMap其他问题
        • LinkedHashMap
        • TreeMap
        • ConcurrentHashMap
          • ConcurrentHashMap实现原理JDK1.7
          • ConcurrentHashMap实现原理JDK1.8
        • ConcurrentSkipListMap
        • Map中key和value的null的问题
    • 线程
      • 线程
        • 创建线程
        • 线程状态及切换
        • 线程中断的理解
        • 几种方法的解释
        • 用户线程与守护线程
        • 线程组ThreadGroup
      • 线程池
        • 线程池工作原理及创建
        • Executor
        • 如何确保同一属性的任务被同一线程执行
      • ThreadLocal
        • ThreadLocal原理
        • ThreadLocal之父子线程传值
        • InheritableThreadLocal
      • 同步与锁
        • 线程安全与锁优化
        • synchronize关键字
        • Lock
          • 队列同步器
            • 同步状态的获取与释放
            • 使用方式
            • 示例:Mutex
            • 示例:TwinsLock
          • 重入锁和读写锁
          • LockSupport
          • Condition
          • 并发工具类
        • CAS
          • CAS的理解
          • Java中原子操作类
        • 3个经典同步问题
      • fork/join的理解
    • I/O
      • I/O概述
        • 磁盘I/O与网络I/O
        • 主要接口
        • 输入流和输出流的使用示例
        • InputStream的重复读
        • BufferdxxxxStream
        • Serailizable
        • File常用方法
        • Files和Path
        • RandomAccessFile
        • 通过零拷贝实现有效数据传输
        • 正确地处理文件
      • NIO基础
      • NIO2
      • Netty
        • Java I/O的演进之路
        • 为什么是Netty
        • 更多
      • I/O调优
    • 异常
      • 异常体系及为什么要有这种异常设计
      • 多catch的执行情况
      • try catch finally 与reture
      • 异常处理的误区
      • Preconditions:方法入参校验工具
    • 枚举
      • 常见用法
      • 枚举类在序列化中的问题
    • 注解
      • 概述
      • Spring中的组合注解的条件注解
      • 常用注解
        • JSR-330标准注解
    • 反射
      • 概述
      • 内部类的反射
      • 反射中需要注意的地方
    • 流程控制
      • switch case without break
      • Java: for(;;) vs. while(true)
    • JVM
      • JVM内存结构
      • Java内存模型
      • 垃圾收集器和内存分配策略
      • 四种引用类型区别及何时回收
      • 类文件结构
      • 类初始化顺序
      • 类加载机制
      • 虚拟机执行引擎
      • 逃逸分析
      • JVM常用配置
      • GC日志分析
      • Java8 JVM 参数解读
      • 垃圾收集器和内存分配策略
    • 面向对象
      • Object类中的方法
      • Class类中的方法
      • 值传递还是引用传递?
      • 接口和抽象类的区别
      • 深拷贝和浅拷贝
      • Integer.parseInt()与Interger.valueof()
      • hashCode()与equal()
      • String
        • String池化及intern()方法的作用
        • 关于字符串
    • 序列化
      • Java序列化的方式有哪些?
    • 新特性
      • 流 Stream
        • Stream是什么
        • Stream API详解
        • Stream进阶
        • 流编程
        • 其他事项
      • lambda表达式
      • 默认方法(Default Methods)
      • @FunctionalInterface注解
    • SPI
      • 理解SPI
    • 字节码
      • javaagent
      • 字节码操纵
      • 如何查看类编译后的字节码指令
      • 字节码指令有哪些
  • Python
    • 异常处理
  • Go
  • 数据结构与算法
    • 数据结构
      • 概述
        • 线性表
        • 栈
        • 队列
        • 串
        • 树
        • 图
      • Java的一些实现
      • 红黑树
      • 双缓冲队列
      • 跳表SkipList
    • 算法
      • 概述
      • 常见算法
        • 基本排序
        • 高级排序
        • 动态规划
  • 框架或工具
    • Spring
      • Spring基础
        • Spring整体架构
        • 什么是IoC
        • Ioc容器的基本实现
        • Spring的MainClass
          • Spring的BeanFactory
          • Spring的Register
          • Spring的Resource和ResourceLoader
          • Spring的PropertySource
          • Spring的PropertyResolver
          • Spring的PropertyEditor
          • Spring的Convert
          • Spring的BeanDefinition
          • Spring的BeanDefinitionReader
          • Spring的BeanDefiniton其他Reader
          • Spring的BeanDefinition其他Reader2
          • Spring的Aware
          • Spring的BeanFctoryPostProcessor
          • Spring的BeanPostProcessor
          • Spring的Listener
        • Xml格式的应用启动
          • Xml格式的应用启动2
          • Xml格式的应用启动3
          • Xml格式的应用启动4
          • Xml格式的应用启动5
          • Xml格式的应用启动6
          • Xml格式的应用启动7
        • Spring中的设计模式
        • 什么是AOP
        • Spring中AOP的实现
      • Spring应用
        • Spring的事务控制
        • @Transactional注解在什么情况下会失效
        • 如何在数据库事务提交成功后进行异步操作
        • Spring中定时任务的原理
    • SpringMVC
      • Controller是如何将参数和前端传来的数据一一对应的
      • 请求处理流程
    • Zookeeper
      • Zookeeper是什么
      • Zookeeper能干啥
    • Shiro
    • druid
    • Netty
    • Consul
      • Consul是什么
    • etcd
    • confd
    • Akka
      • Actor模型是什么
  • 数据库
    • 基本概念
    • MySQL
      • 基本配置
      • MySQL数据类型
      • MySQL存储引擎
      • MySQL事务
        • MySQL事务概念
      • MySQL索引
        • MySQL中的索引类型
        • B-Tree/B+Tree概述
        • 为什么使用B+Tree
        • MySQL中的B+Tree索引
        • MySQL高性能索引策略
      • MySQL查询
        • MySQL查询过程
        • MySQL查询性能优化
        • 使用EXPLAIN
      • MySQL锁
        • MySQL中锁概述
        • InnoDB的并发控制
        • MySQL乐观锁
      • MySQL分库分表
        • 分库/分表
        • 跨库JOIN
        • 跨库分页
        • 分库分表后的平滑扩容
        • 分区表
        • 分布式ID生成方法
      • MySQL实战
        • 在线表结构变更
        • MySQL优化规则
        • MySQL问题排查
        • 常见查询场景
    • Redis
    • Hbase
    • OpenTSDB
    • rrd
    • MongoDB
    • 连接池
  • 系统设计
    • 一致性Hash算法
    • 限流
      • 限流是什么
      • 限流算法
      • 应用内限流
      • 分布式限流
      • 接入层限流
        • ngx_http_limit_conn_module
        • ngx_http_limit_req_module
        • lua_resty_limit-tarffic
      • 节流
    • 降级
      • 降级详解
      • 人工降级开关的实现
      • 自动降级的实现:Hystrix
    • 负载均衡
      • 概述
      • 互联网架构下的负载均衡
      • Nginx负载均衡(七层)
      • Nginx负载均衡(四层)
      • Nginx动态配置
    • 超时与重试机制
      • 什么地方要超时与重试
      • 代理层超时与重试
      • Web容器超时
      • 中间件客户端超时与重试
      • 数据库超时
      • NoSQL客户端超时设置
      • 业务超时
      • 前端请求超时
    • 网关
    • CAP
      • 什么是CAP
      • CAP理解
    • 生产者-消费者模型
      • 使用notify/wait方式
      • 使用await/signal实现
      • 使用阻塞队列实现
      • 使用信号量实现
      • 使用管道流实现
      • 无锁队列Disruptor
      • 双缓冲队列
    • 缓存
      • 缓存概述
      • 数据库缓存
      • 应用缓存
      • 前端缓存
      • 本地缓存
    • 秒杀
    • LRU
  • 版本控制
    • Git
      • Git常用命令
      • 场景命令
    • Svn
  • 计算机操作系统
    • Linux
      • Linux中重要概念
      • 常用命令
      • 查看日志
      • 权限管理
      • 登录或传输
      • 防火墙
      • 配置ssh免密
      • 进程
      • 防火墙
    • Mac
    • 计算机基础
      • 进制
      • Java中的位运算
      • 计算机存储系统结构
  • 网络
    • TCP三次握手和四次挥手
    • 网络术语
      • 网关、路由器、交换机、IP等
      • VLAN
      • LAN
  • 设计模式
    • 设计模式概述
    • 创建型
      • 单例模式
      • 工厂模式
      • 建造者模式
      • 原型模式
      • 享元模式
    • 行为型
      • 观察者模式
      • 策略模式
      • 模板模式
      • 责任链模式
      • 命令模式
      • 外观模式
      • 迭代器模式
      • 中介者模式
        • 中介模式续
      • 状态模式
        • 状态模式实例
        • 状态模式思考
      • 访问者模式
        • 访问者实例1
        • 访问者模式续
    • 结构型
      • 组合模式
        • 组合模式续
      • 装饰模式
        • 装饰模式续
      • 代理模式
      • 备忘录模式
      • 桥接模式
        • 桥接模式实例一
  • 构建工具
    • Maven
      • 常用命令
      • Maven生命周期
      • Maven中的变量和属性
      • 不同环境的如何配置不同的变量
      • 常用插件及配置
      • 其他问题
      • dependencies与dependencyManagement的区别
    • Gradle
  • 大数据
    • Hadoop
    • Storm
    • Spark
  • 服务器
    • Tomcat
      • server.xml配置详解
      • 线程池和连接数配置
      • Maven远程部署
      • 一些小技巧
      • Tomcat类加载机制分析
      • Tomcat的日志
      • Tomcat架构
        • 概述
        • Server 的启动流程
        • 请求处理流程
    • Nginx
      • 常用命令
      • 基本配置
      • Lua
    • Tengine
  • 中间件
    • 任务调度
      • 为什么需要任务调度
    • 消息队列
      • 为什么需要消息队列
      • 消息队列关键点
      • 消息中间件需要解决的问题
      • 不同消息队列产品对比
      • RocketMQ
        • 快速入门
        • 整体架构
        • 部署方式
          • Broker部署方案
        • 客户端使用
          • 客户端使用指南
          • 快速开始
          • 简单示例
          • 有序消息示例
          • 广播消息示例
          • 定时消息示例
          • 批量消息示例
          • 过滤消息示例
          • 日志输出配置示例
        • 关键点实现
          • 顺序消息的实现
        • 最佳实践
          • Broker的最佳实践
          • 生产者最佳实践
            • 生产者最佳实践续
          • 消费者最佳实践
            • 消费者最佳实践续
          • 名称服务最佳实践
          • JVM/kernel配置的最佳实践
          • 新特性 Filter Server
          • 其他事项
      • RabbitMQ
      • Kafka
    • 分布式事务
      • 什么是分布式事务
      • 解决方案
    • 服务治理
      • RPC概念
      • RPC最简实现
      • 为什么需要服务治理
      • Dubbo
        • Dubbo整体架构
      • Java RMI
    • 分布式锁
      • 如何设计分布式锁
        • 基于zookeeper
        • 基于Redis
    • 注册中心
      • 注册中心的职责
      • 不同注册中心的比较
    • 配置中心
      • 概述
      • 配置中心的实现与选型
  • Web开发
    • Http请求类型及区别
    • 常见的content-type
    • 如何处理跨域
    • Restful最佳实践
    • HTTP状态码
    • Http下载原理
  • 测试
    • 压测:apache bench
    • 压测:Jmeter
Powered by GitBook
On this page
  • 1、Publish/Subscribe
  • 2、Message Priority
  • 3、Message Order
  • 4、Message Filter
  • 5、Message Persistence
  • 6、Message Reliablity
  • 7、Low Latency Messaging
  • 8、At least Once
  • 9、Exactly Only Once
  • 10、Broker的Buffer满了怎么办?
  • 11 、回溯消费
  • 12、 消息堆积
  • 13、分布式事务
  • 14 、定时消息
  • 4.15 消息重试
  • 内容来源
  1. 中间件
  2. 消息队列

消息中间件需要解决的问题

1、Publish/Subscribe

发布订阅是消息中间件的最基本功能,也是相对于传统RPC通信而言。在此不再详述。

2、Message Priority

规范中描述的优先级是指在一个消息队列中,每条消息都有不同的优先级,一般用整数来描述,优先级高的消息先投递,如果消息完全在一个内存队列中,那么在投递前可以按照优先级排序,令优先级高的先投递。

对于优先级问题,可以归纳为2类

1) 只要达到优先级目的即可,不是严格意义上的优先级,通常将优先级划分为高、中、低,或者再多几个级别。每个优先级可以用不同的topic表示,发消息时,指定不同的topic来表示优先级,这种方式可以解决绝大部分的优先级问题,但是对业务的优先级精确性做了妥协。

2) 严格的优先级,优先级用整数表示,例如0 ~ 65535,这种优先级问题一般使用不同topic解决就非常不合适。如果要让MQ解决此问题,会对MQ的性能造成非常大的影响。这里要确保一点,业务上是否确实需要这种严格的优先级,如果将优先级压缩成几个,对业务的影响有多大?

3、Message Order

消息有序指的是一类消息消费时,能按照发送的顺序来消费。例如:一个订单产生了3条消息,分别是订单创建,订单付款,订单完成。消费时,要按照这个顺序消费才能有意义。但是同时订单之间是可以并行消费的。

4、Message Filter

Broker端消息过滤

在Broker中,按照Consumer的要求做过滤,优点是减少了对于Consumer无用消息的网络传输。

缺点是增加了Broker的负担,实现相对复杂。

Consumer端消息过滤

这种过滤方式可由应用完全自定义实现,但是缺点是很多无用的消息要传输到Consumer端。

5、Message Persistence

几种持久化方式:

(1). 持久化到数据库,例如Mysql。

(2). 持久化到KV存储,例如levelDB、伯克利DB等KV存储系统。

(3). 文件记录形式持久化,例如Kafka,RocketMQ

(4). 对内存数据做一个持久化镜像,例如beanstalkd,VisiNotify

(1)、(2)、(3)三种持久化方式都具有将内存队列Buffer进行扩展的能力,(4)只是一个内存的镜像,作用是当Broker挂掉重启后仍然能将之前内存的数据恢复出来。

JMS与CORBA Notification规范没有明确说明如何持久化,但是持久化部分的性能直接决定了整个消息中间件的性能。

6、Message Reliablity

影响消息可靠性的几种情况:

(1). Broker正常关闭

(2). Broker异常Crash

(3). OS Crash

(4). 机器掉电,但是能立即恢复供电情况。

(5). 机器无法开机(可能是cpu、主板、内存等关键设备损坏)

(6). 磁盘设备损坏。

(1)、(2)、(3)、(4)四种情况都属于硬件资源可立即恢复情况,RocketMQ在这四种情况下能保证消息不丢,或者丢失少量数据(依赖刷盘方式是同步还是异步)。

(5)、(6)属于单点故障,且无法恢复,一旦发生,在此单点上的消息全部丢失。RocketMQ在这两种情况下,通过异步复制,可保证99%的消息不丢,但是仍然会有极少量的消息可能丢失。通过同步双写技术可以完全避免单点,同步双写势必会影响性能,适合对消息可靠性要求极高的场合,例如与Money相关的应用。

7、Low Latency Messaging

在消息不堆积情况下,消息到达Broker后,能立刻到达Consumer。

8、At least Once

是指每个消息必须投递一次

9、Exactly Only Once

(1). 发送消息阶段,不允许发送重复的消息。

(2). 消费消息阶段,不允许消费重复的消息。

此问题的本质原因是网络调用存在不确定性,即既不成功也不失败的第三种状态,所以才产生了消息重复性问题。

10、Broker的Buffer满了怎么办?

Broker 的 Buffer 通常指的是 Broker 中一个队列的内存 Buffer 大小,这类 Buffer 通常大小有限,如果 Buffer 满 了以后怎么办?

下面是 CORBA Notification 规范中处理方式:

(1). RejectNewEvents

拒绝新来的消息,向 Producer 返回 RejectNewEvents 错误码。

(2). 按照特定策略丢弃已有消息

a) AnyOrder - Any event may be discarded on overflow. This is the default setting for this property.

b) FifoOrder - The first event received will be the first discarded.

c) LifoOrder - The last event received will be the first discarded.

d) PriorityOrder - Events should be discarded in priority order, such that lower priority

events will be discarded before higher priority events.

e) DeadlineOrder - Events should be discarded in the order of shortest expiry deadline first.

11 、回溯消费

回溯消费是指 Consumer 已经消费成功的消息,由于业务上需求需要重新消费,要支持此功能,Broker 在向Consumer 投递成功消息后,消息仍然需要保留。并且重新消费一般是按照时间维度,例如由于 Consumer 系统故障,恢复后需要重新消费 1 小时前的数据,那么 Broker 要提供一种机制,可以按照时间维度来回退消费进度。

12、 消息堆积

消息中间件的主要功能是异步解耦,还有个重要功能是挡住前端的数据洪峰,保证后端系统的稳定性,这就要 求消息中间件具有一定的消息堆积能力,消息堆积分以下两种情况:

(1). 消息堆积在内存 Buffer,一旦超过内存 Buffer,可以根据一定的丢弃策略来丢弃消息,如 CORBA Notification 规范中描述。适合能容忍丢弃消息的业务,这种情况消息的堆积能力主要在于内存 Buffer 大小,而且消息 堆积后,性能下降不会太大,因为内存中数据多少对于对外提供的访问能力影响有限。

(2). 消息堆积到持久化存储系统中,例如DB,KV存储,文件记录形式。

当消息不能在内存 Cache 命中时,要不可避免的访问磁盘,会产生大量读 IO,读 IO 的吞吐量直接决定了 消息堆积后的访问能力。

评估消息堆积能力主要有以下四点:

(1). 消息能堆积多少条,多少字节?即消息的堆积容量。

(2). 消息堆积后,发消息的吞吐量大小,是否会受堆积影响? (3). 消息堆积后,正常消费的Consumer是否会受影响?

(4). 消息堆积后,访问堆积在磁盘的消息时,吞吐量有多大?

13、分布式事务

已知的几个分布式事务规范,如 XA,JTA 等。其中 XA 规范被各大数据库厂商广泛支持,如 Oracle,Mysql 等。 其中 XA 的 TM 实现佼佼者如 Oracle Tuxedo,在金融、电信等领域被广泛应用。

分布式事务涉及到两阶段提交问题,在数据存储方面的方面必然需要 KV 存储的支持,因为第二阶段的提交回 滚需要修改消息状态,一定涉及到根据 Key 去查找 Message 的动作。

14 、定时消息

定时消息是指消息发到 Broker 后,不能立刻被 Consumer 消费,要到特定的时间点或者等待特定的时间后才能 被消费。

如果要支持任意的时间精度,在 Broker 层面,必须要做消息排序,如果再涉及到持久化,那么消息排序要不 可避免的产生巨大性能开销。

4.15 消息重试

Consumer 消费消息失败后,要提供一种重试机制,令消息再消费一次。Consumer 消费消息失败通常可以认为 有以下几种情况

1. 由于消息本身的原因,例如反序列化失败,消息数据本身无法处理(例如话费充值,当前消息的手机号被 注销,无法充值)等。 这种错误通常需要跳过这条消息,再消费其他消息,而这条失败的消息即使立刻重试消费,99%也不成功, 所以最好提供一种定时重试机制,即过 10s 秒后再重试。

2. 由于依赖的下游应用服务不可用,例如 db 连接不可用,外系统网络不可达等。 遇到这种错误,即使跳过当前失败的消息,消费其他消息同样也会报错。这种情况建议应用 sleep 30s,再 消费下一条消息,这样可以减轻 Broker 重试消息的压力。

内容来源

Previous消息队列关键点Next不同消息队列产品对比

Last updated 6 years ago

:RocketMQ原理简介

Github vantagewang/document