way-to-architect
  • 前言
  • Java
    • Java关键字
      • Java中四种修饰符的限制范围
      • static和final
    • 容器
      • 容器概述
        • 容器:综述
        • Iterator原理及实现
        • fast-fail机制
        • 比较器Comparator
        • Collections工具类
      • List
        • List综述
        • ArrayList原理分析
        • ArrayList在循环过程中删除元素的问题
        • 常用的小技巧
        • CopyOnWrite
      • Set
        • Set综述
        • HashSet
        • LinkedHashSet
        • TreeSet
      • Queue
        • Queue综述
        • ArrayBlockingQueue实现原理
        • LinkedBlockingQueue实现原理
        • 高性能无锁队列Disruptor
      • Map
        • Map综述
        • HashMap
          • HashMap实现原理
          • HashMap中的位运算
          • HashMap其他问题
        • LinkedHashMap
        • TreeMap
        • ConcurrentHashMap
          • ConcurrentHashMap实现原理JDK1.7
          • ConcurrentHashMap实现原理JDK1.8
        • ConcurrentSkipListMap
        • Map中key和value的null的问题
    • 线程
      • 线程
        • 创建线程
        • 线程状态及切换
        • 线程中断的理解
        • 几种方法的解释
        • 用户线程与守护线程
        • 线程组ThreadGroup
      • 线程池
        • 线程池工作原理及创建
        • Executor
        • 如何确保同一属性的任务被同一线程执行
      • ThreadLocal
        • ThreadLocal原理
        • ThreadLocal之父子线程传值
        • InheritableThreadLocal
      • 同步与锁
        • 线程安全与锁优化
        • synchronize关键字
        • Lock
          • 队列同步器
            • 同步状态的获取与释放
            • 使用方式
            • 示例:Mutex
            • 示例:TwinsLock
          • 重入锁和读写锁
          • LockSupport
          • Condition
          • 并发工具类
        • CAS
          • CAS的理解
          • Java中原子操作类
        • 3个经典同步问题
      • fork/join的理解
    • I/O
      • I/O概述
        • 磁盘I/O与网络I/O
        • 主要接口
        • 输入流和输出流的使用示例
        • InputStream的重复读
        • BufferdxxxxStream
        • Serailizable
        • File常用方法
        • Files和Path
        • RandomAccessFile
        • 通过零拷贝实现有效数据传输
        • 正确地处理文件
      • NIO基础
      • NIO2
      • Netty
        • Java I/O的演进之路
        • 为什么是Netty
        • 更多
      • I/O调优
    • 异常
      • 异常体系及为什么要有这种异常设计
      • 多catch的执行情况
      • try catch finally 与reture
      • 异常处理的误区
      • Preconditions:方法入参校验工具
    • 枚举
      • 常见用法
      • 枚举类在序列化中的问题
    • 注解
      • 概述
      • Spring中的组合注解的条件注解
      • 常用注解
        • JSR-330标准注解
    • 反射
      • 概述
      • 内部类的反射
      • 反射中需要注意的地方
    • 流程控制
      • switch case without break
      • Java: for(;;) vs. while(true)
    • JVM
      • JVM内存结构
      • Java内存模型
      • 垃圾收集器和内存分配策略
      • 四种引用类型区别及何时回收
      • 类文件结构
      • 类初始化顺序
      • 类加载机制
      • 虚拟机执行引擎
      • 逃逸分析
      • JVM常用配置
      • GC日志分析
      • Java8 JVM 参数解读
      • 垃圾收集器和内存分配策略
    • 面向对象
      • Object类中的方法
      • Class类中的方法
      • 值传递还是引用传递?
      • 接口和抽象类的区别
      • 深拷贝和浅拷贝
      • Integer.parseInt()与Interger.valueof()
      • hashCode()与equal()
      • String
        • String池化及intern()方法的作用
        • 关于字符串
    • 序列化
      • Java序列化的方式有哪些?
    • 新特性
      • 流 Stream
        • Stream是什么
        • Stream API详解
        • Stream进阶
        • 流编程
        • 其他事项
      • lambda表达式
      • 默认方法(Default Methods)
      • @FunctionalInterface注解
    • SPI
      • 理解SPI
    • 字节码
      • javaagent
      • 字节码操纵
      • 如何查看类编译后的字节码指令
      • 字节码指令有哪些
  • Python
    • 异常处理
  • Go
  • 数据结构与算法
    • 数据结构
      • 概述
        • 线性表
        • 栈
        • 队列
        • 串
        • 树
        • 图
      • Java的一些实现
      • 红黑树
      • 双缓冲队列
      • 跳表SkipList
    • 算法
      • 概述
      • 常见算法
        • 基本排序
        • 高级排序
        • 动态规划
  • 框架或工具
    • Spring
      • Spring基础
        • Spring整体架构
        • 什么是IoC
        • Ioc容器的基本实现
        • Spring的MainClass
          • Spring的BeanFactory
          • Spring的Register
          • Spring的Resource和ResourceLoader
          • Spring的PropertySource
          • Spring的PropertyResolver
          • Spring的PropertyEditor
          • Spring的Convert
          • Spring的BeanDefinition
          • Spring的BeanDefinitionReader
          • Spring的BeanDefiniton其他Reader
          • Spring的BeanDefinition其他Reader2
          • Spring的Aware
          • Spring的BeanFctoryPostProcessor
          • Spring的BeanPostProcessor
          • Spring的Listener
        • Xml格式的应用启动
          • Xml格式的应用启动2
          • Xml格式的应用启动3
          • Xml格式的应用启动4
          • Xml格式的应用启动5
          • Xml格式的应用启动6
          • Xml格式的应用启动7
        • Spring中的设计模式
        • 什么是AOP
        • Spring中AOP的实现
      • Spring应用
        • Spring的事务控制
        • @Transactional注解在什么情况下会失效
        • 如何在数据库事务提交成功后进行异步操作
        • Spring中定时任务的原理
    • SpringMVC
      • Controller是如何将参数和前端传来的数据一一对应的
      • 请求处理流程
    • Zookeeper
      • Zookeeper是什么
      • Zookeeper能干啥
    • Shiro
    • druid
    • Netty
    • Consul
      • Consul是什么
    • etcd
    • confd
    • Akka
      • Actor模型是什么
  • 数据库
    • 基本概念
    • MySQL
      • 基本配置
      • MySQL数据类型
      • MySQL存储引擎
      • MySQL事务
        • MySQL事务概念
      • MySQL索引
        • MySQL中的索引类型
        • B-Tree/B+Tree概述
        • 为什么使用B+Tree
        • MySQL中的B+Tree索引
        • MySQL高性能索引策略
      • MySQL查询
        • MySQL查询过程
        • MySQL查询性能优化
        • 使用EXPLAIN
      • MySQL锁
        • MySQL中锁概述
        • InnoDB的并发控制
        • MySQL乐观锁
      • MySQL分库分表
        • 分库/分表
        • 跨库JOIN
        • 跨库分页
        • 分库分表后的平滑扩容
        • 分区表
        • 分布式ID生成方法
      • MySQL实战
        • 在线表结构变更
        • MySQL优化规则
        • MySQL问题排查
        • 常见查询场景
    • Redis
    • Hbase
    • OpenTSDB
    • rrd
    • MongoDB
    • 连接池
  • 系统设计
    • 一致性Hash算法
    • 限流
      • 限流是什么
      • 限流算法
      • 应用内限流
      • 分布式限流
      • 接入层限流
        • ngx_http_limit_conn_module
        • ngx_http_limit_req_module
        • lua_resty_limit-tarffic
      • 节流
    • 降级
      • 降级详解
      • 人工降级开关的实现
      • 自动降级的实现:Hystrix
    • 负载均衡
      • 概述
      • 互联网架构下的负载均衡
      • Nginx负载均衡(七层)
      • Nginx负载均衡(四层)
      • Nginx动态配置
    • 超时与重试机制
      • 什么地方要超时与重试
      • 代理层超时与重试
      • Web容器超时
      • 中间件客户端超时与重试
      • 数据库超时
      • NoSQL客户端超时设置
      • 业务超时
      • 前端请求超时
    • 网关
    • CAP
      • 什么是CAP
      • CAP理解
    • 生产者-消费者模型
      • 使用notify/wait方式
      • 使用await/signal实现
      • 使用阻塞队列实现
      • 使用信号量实现
      • 使用管道流实现
      • 无锁队列Disruptor
      • 双缓冲队列
    • 缓存
      • 缓存概述
      • 数据库缓存
      • 应用缓存
      • 前端缓存
      • 本地缓存
    • 秒杀
    • LRU
  • 版本控制
    • Git
      • Git常用命令
      • 场景命令
    • Svn
  • 计算机操作系统
    • Linux
      • Linux中重要概念
      • 常用命令
      • 查看日志
      • 权限管理
      • 登录或传输
      • 防火墙
      • 配置ssh免密
      • 进程
      • 防火墙
    • Mac
    • 计算机基础
      • 进制
      • Java中的位运算
      • 计算机存储系统结构
  • 网络
    • TCP三次握手和四次挥手
    • 网络术语
      • 网关、路由器、交换机、IP等
      • VLAN
      • LAN
  • 设计模式
    • 设计模式概述
    • 创建型
      • 单例模式
      • 工厂模式
      • 建造者模式
      • 原型模式
      • 享元模式
    • 行为型
      • 观察者模式
      • 策略模式
      • 模板模式
      • 责任链模式
      • 命令模式
      • 外观模式
      • 迭代器模式
      • 中介者模式
        • 中介模式续
      • 状态模式
        • 状态模式实例
        • 状态模式思考
      • 访问者模式
        • 访问者实例1
        • 访问者模式续
    • 结构型
      • 组合模式
        • 组合模式续
      • 装饰模式
        • 装饰模式续
      • 代理模式
      • 备忘录模式
      • 桥接模式
        • 桥接模式实例一
  • 构建工具
    • Maven
      • 常用命令
      • Maven生命周期
      • Maven中的变量和属性
      • 不同环境的如何配置不同的变量
      • 常用插件及配置
      • 其他问题
      • dependencies与dependencyManagement的区别
    • Gradle
  • 大数据
    • Hadoop
    • Storm
    • Spark
  • 服务器
    • Tomcat
      • server.xml配置详解
      • 线程池和连接数配置
      • Maven远程部署
      • 一些小技巧
      • Tomcat类加载机制分析
      • Tomcat的日志
      • Tomcat架构
        • 概述
        • Server 的启动流程
        • 请求处理流程
    • Nginx
      • 常用命令
      • 基本配置
      • Lua
    • Tengine
  • 中间件
    • 任务调度
      • 为什么需要任务调度
    • 消息队列
      • 为什么需要消息队列
      • 消息队列关键点
      • 消息中间件需要解决的问题
      • 不同消息队列产品对比
      • RocketMQ
        • 快速入门
        • 整体架构
        • 部署方式
          • Broker部署方案
        • 客户端使用
          • 客户端使用指南
          • 快速开始
          • 简单示例
          • 有序消息示例
          • 广播消息示例
          • 定时消息示例
          • 批量消息示例
          • 过滤消息示例
          • 日志输出配置示例
        • 关键点实现
          • 顺序消息的实现
        • 最佳实践
          • Broker的最佳实践
          • 生产者最佳实践
            • 生产者最佳实践续
          • 消费者最佳实践
            • 消费者最佳实践续
          • 名称服务最佳实践
          • JVM/kernel配置的最佳实践
          • 新特性 Filter Server
          • 其他事项
      • RabbitMQ
      • Kafka
    • 分布式事务
      • 什么是分布式事务
      • 解决方案
    • 服务治理
      • RPC概念
      • RPC最简实现
      • 为什么需要服务治理
      • Dubbo
        • Dubbo整体架构
      • Java RMI
    • 分布式锁
      • 如何设计分布式锁
        • 基于zookeeper
        • 基于Redis
    • 注册中心
      • 注册中心的职责
      • 不同注册中心的比较
    • 配置中心
      • 概述
      • 配置中心的实现与选型
  • Web开发
    • Http请求类型及区别
    • 常见的content-type
    • 如何处理跨域
    • Restful最佳实践
    • HTTP状态码
    • Http下载原理
  • 测试
    • 压测:apache bench
    • 压测:Jmeter
Powered by GitBook
On this page
  • 概述
  • 流使用详解
  • 参考
  1. Java
  2. 新特性
  3. 流 Stream

Stream API详解

PreviousStream是什么NextStream进阶

Last updated 6 years ago

概述

当我们使用一个流的时候,通常包括三个基本步骤:

①获取一个数据源(source)→ ②数据转换 → ③执行操作,获取想要的结果。每次转换原有 Stream 对象不改变,返回一个新的 Stream 对象(可以有多次转换),这就允许对其操作可以像链条一样排列,变成一个管道,如下图所示。

图 1. 流管道 (Stream Pipeline) 的构成

1、生成 Stream Source的方式

①从 Collection 和数组

Collection.stream()   
Collection.parallelStream()
Arrays.stream(T array) or Stream.of()

//演示代码
List<String> list = Arrays.asList("dog", "cat", "pig", "rabbit");
Stream<String> stream = list.stream();
Stream<String> parallelStream = list.parallelStream();
int[] array = {1, 2, 34, 5, 56, 4, 24};
IntStream intStream = Arrays.stream(array);
Stream<Integer> integerStream = Stream.of(1, 2, 34, 5, 56, 4, 24);

②从 BufferedReader

java.io.BufferedReader.lines()

③静态工厂

java.util.stream.IntStream.range()
java.nio.file.Files.walk()

④自己构建

java.util.Spliterator

⑤其它

Random.ints()
BitSet.stream()
Pattern.splitAsStream(java.lang.CharSequence)
JarFile.stream()

2、流的操作类型

  • Intermediate(中间操纵):一个流可以后面跟随零个或多个 intermediate 操作。其目的主要是打开流,做出某种程度的数据映射/过滤,然后返回一个新的流,交给下一个操作使用。这类操作都是惰性化的(lazy),就是说,仅仅调用到这类方法,并没有真正开始流的遍历。

  • Terminal(终端操作):一个流只能有一个 terminal 操作,当这个操作执行后,流就被使用“光”了,无法再被操作。所以这必定是流的最后一个操作。Terminal 操作的执行,才会真正开始流的遍历,并且会生成一个结果,或者一个 side effect。

在对于一个 Stream 进行多次转换操作 (Intermediate 操作),每次都对 Stream 的每个元素进行转换,而且是执行多次,这样时间复杂度就是 N(转换次数)个 for 循环里把所有操作都做掉的总和吗?其实不是这样的,转换操作都是 lazy 的,多个转换操作只会在 Terminal 操作的时候融合起来,一次循环完成。我们可以这样简单的理解,Stream 里有个操作函数的集合,每次转换操作就是把转换函数放入这个集合中,在 Terminal 操作的时候循环 Stream 对应的集合,然后对每个元素执行所有的函数。

还有一种操作被称为 short-circuiting,用以指:

  • 对于一个 intermediate 操作,如果它接受的是一个无限大(infinite/unbounded)的 Stream,但返回一个有限的新 Stream。

  • 对于一个 terminal 操作,如果它接受的是一个无限大的 Stream,但能在有限的时间计算出结果。

当操作一个无限大的 Stream,而又希望在有限时间内完成操作,则在管道内拥有一个 short-circuiting 操作是必要非充分条件。

一个流操作的示例

int sum = widgets.stream()                //获取当前小物件的 source
        .filter(w -> w.getColor() == RED) //intermediate 操作,进行数据筛选和转换
        .mapToInt(w -> w.getWeight())     //intermediate 操作,进行数据筛选和转换
        .sum();                           //terminal 操作,对符合条件的全部小物件作重量求和

流使用详解

简单说,对 Stream 的使用就是实现一个 filter-map-reduce 过程,产生一个最终结果,或者导致一个副作用(side effect)。

流的构造与转换

下面提供最常见的几种构造 Stream 的样例。

构造流的几种常见方法

// 1. Individual values
Stream stream = Stream.of("a", "b", "c");
// 2. Arrays
String[] strArray = new String[]{"a", "b", "c"};
stream = Stream.of(strArray);
stream = Arrays.stream(strArray);
// 3. Collections
List<String> list = Arrays.asList(strArray);
stream = list.stream();

需要注意的是,对于基本数值型,目前有三种对应的包装类型 Stream:IntStream、LongStream、DoubleStream。当然我们也可以用 Stream<Integer>、Stream<Long> >、Stream<Double>,但是 boxing 和 unboxing 会很耗时,所以特别为这三种基本数值型提供了对应的 Stream。Java 8 中还没有提供其它数值型 Stream,因为这将导致扩增的内容较多。而常规的数值型聚合运算可以通过上面三种 Stream 进行。

数值流的构造

IntStream.of(new int[]{1, 2, 3}).forEach(System.out::println);
IntStream.range(1, 3).forEach(System.out::println);
IntStream.rangeClosed(1, 3).forEach(System.out::println);

流转换为其它数据结构

// 1. Array
String[] strArray1 = stream.toArray(String[]::new);
// 2. Collection
List<String> list1 = stream.collect(Collectors.toList());
List<String> list2 = stream.collect(Collectors.toCollection(ArrayList::new));
Set set1 = stream.collect(Collectors.toSet());
Stack stack1 = stream.collect(Collectors.toCollection(Stack::new));
// 3. String
String str = stream.collect(Collectors.joining()).toString();

注意:一个 Stream 只可以使用一次,上面的代码为了简洁而重复使用了数次。

流的操作

当把一个数据结构包装成 Stream 后,就要开始对里面的元素进行各类操作了。常见的操作可以归类如下。

  • 中间操作(Intermediate):

map (mapToInt, flatMap 等)、 filter、 distinct、 sorted、 peek、 limit、 skip、 parallel、 sequential、 unordered

  • 终止操作(Terminal):

forEach、 forEachOrdered、 toArray、 reduce、 collect、 min、 max、 count、 anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 iterator

  • Short-circuiting:

anyMatch、 allMatch、 noneMatch、 findFirst、 findAny、 limit

我们下面看一下 Stream 的比较典型用法。

1、map/flatMap

map:把 input Stream 的每一个元素,映射成 output Stream 的另外一个元素。

flatMap:一对多映射,把 input Stream 中的层级结构扁平化,就是将最底层元素抽出来放到一起。

转换为大写:把所有的单词转换为大写

List<String> output = wordList.stream()
        .map(String::toUpperCase)
        .collect(Collectors.toList());

平方数:生成一个整数 list 的平方数 {1, 4, 9, 16}

List<Integer> nums = Arrays.asList(1, 2, 3, 4);
List<Integer> squareNums = nums.stream()
        .map(n -> n * n)
        .collect(Collectors.toList());

一对多

Stream<List<Integer>> inputStream = Stream.of(
        Arrays.asList(1),
        Arrays.asList(2, 3),
        Arrays.asList(4, 5, 6)
);
Stream<Integer> outputStream = inputStream.
        flatMap((childList) -> childList.stream());

2、filter

filter 对原始 Stream 进行某项测试,通过测试的元素被留下来生成一个新 Stream。(即过滤)。

留下偶数

Integer[] sixNums = {1, 2, 3, 4, 5, 6};
Integer[] evens = Stream.of(sixNums)
        .filter(n -> n % 2 == 0)
        .toArray(Integer[]::new);

把单词挑出来:首先把每行的单词用 flatMap 整理到新的 Stream,然后保留长度不为 0 的,就是整篇文章中的全部单词了。

List<String> output = reader.lines()
        .flatMap(line -> Stream.of(line.split(REGEXP)))
        .filter(word -> word.length() > 0)
        .collect(Collectors.toList());

3、forEach

forEach 方法接收一个 Lambda 表达式,然后在 Stream 的每一个元素上执行该表达式。

打印姓名:对一个人员集合遍历,找出男性并打印姓名

// Java 8
roster.stream()
        .filter(p -> p.getGender() == Person.Sex.MALE)
        .forEach(p -> System.out.println(p.getName()));
// Pre-Java 8
for (Person p : roster) {
    if (p.getGender() == Person.Sex.MALE) {
        System.out.println(p.getName());
    }
}

可以看出来,forEach 是为 Lambda 而设计的,保持了最紧凑的风格。而且 Lambda 表达式本身是可以重用的,非常方便。当需要为多核系统优化时,可以 parallelStream().forEach(),只是此时原有元素的次序没法保证,并行的情况下将改变串行时操作的行为,此时 forEach 本身的实现不需要调整,而 Java8 以前的 for 循环 code 可能需要加入额外的多线程逻辑。

但一般认为,forEach 和常规 for 循环的差异不涉及到性能,它们仅仅是函数式风格与传统 Java 风格的差别。

另外一点需要注意,forEach 是 terminal 操作,因此它执行后,Stream 的元素就被“消费”掉了,你无法对一个 Stream 进行两次 terminal 运算。

相反,具有相似功能的 intermediate 操作 peek 可以达到上述目的。

peek 对每个元素执行操作并返回一个新的 Stream

Stream.of("one", "two", "three", "four")
        .filter(e -> e.length() > 3)
        .peek(e -> System.out.println("Filtered value: " + e))
        .map(String::toUpperCase)
        .peek(e -> System.out.println("Mapped value: " + e))
        .collect(Collectors.toList());

注意:forEach 不能修改自己包含的本地变量值,也不能用 break/return 之类的关键字提前结束循环。

4、findFirst

这是一个 termimal 兼 short-circuiting 操作,它总是返回 Stream 的第一个元素,或者空。

这里比较重点的是它的返回值类型:Optional。这也是一个模仿 Scala 语言中的概念,作为一个容器,它可能含有某值,或者不包含。使用它的目的是尽可能避免 NullPointerException。

Optional 的两个用例

public static void print(String text) {
    // Java 8
    Optional.ofNullable(text).ifPresent(System.out::println);
    // Pre-Java 8
    if (text != null) {
        System.out.println(text);
    }
}

public static int getLength(String text) {
    // Java 8
    return Optional.ofNullable(text).map(String::length).orElse(-1);
    // Pre-Java 8
    return if (text != null) ? text.length() : -1;
}

在更复杂的 if (xx != null) 的情况中,使用 Optional 代码的可读性更好,而且它提供的是编译时检查,能极大的降低 NPE 这种 Runtime Exception 对程序的影响,或者迫使程序员更早的在编码阶段处理空值问题,而不是留到运行时再发现和调试。

Stream 中的 findAny、max/min、reduce 等方法等返回 Optional 值。还有例如 IntStream.average() 返回 OptionalDouble 等等。

5、reduce

主要作用是把 Stream 元素组合起来。它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的 reduce。例如 Stream 的 sum 就相当于

Integer sum = integers.reduce(0, (a, b) -> a+b); 
//或者
Integer sum = integers.reduce(0, Integer::sum);

也有没有起始值的情况,这时会把 Stream 的前面两个元素组合起来,返回的是 Optional。

reduce 的用例

// 字符串连接,concat = "ABCD"
String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat);
// 求最小值,minValue = -3.0
double minValue = Stream.of(-1.5, 1.0, -3.0, -2.0).reduce(Double.MAX_VALUE, Double::min);
// 求和,sumValue = 10, 有起始值
int sumValue = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum);
// 求和,sumValue = 10, 无起始值
sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
// 过滤,字符串连接,concat = "ace"
concat = Stream.of("a", "B", "c", "D", "e", "F")
        .filter(x -> x.compareTo("Z") > 0)
        .reduce("", String::concat);

上面代码,例如第一个示例的 reduce(),第一个参数(空白字符)即为起始值,第二个参数(String::concat)为 BinaryOperator。这类有起始值的 reduce() 都返回具体的对象。而对于第四个示例没有起始值的 reduce(),由于可能没有足够的元素,返回的是 Optional,请留意这个区别。

6、limit/skip

limit 返回 Stream 的前面 n 个元素;

skip 则是扔掉前 n 个元素(它是由一个叫 subStream 的方法改名而来)。

limit 和 skip 对运行次数的影响

public void testLimitAndSkip() {
    List<Person> persons = new ArrayList();
    for (int i = 1; i <= 10000; i++) {
        Person person = new Person(i, "name" + i);
        persons.add(person);
    }
    
    List<String> personList2 = persons.stream()
            .map(Person::getName)
            .limit(10)
            .skip(3)
            .collect(Collectors.toList());
    System.out.println(personList2);
}
private class Person {
    
    public int no;
    private String name;
    public Person (int no, String name) {
        this.no = no;
        this.name = name;
    }
    public String getName() {
        System.out.println(name);
        return name;
    }
}
//输出结果如下
name1
name2
name3
name4
name5
name6
name7
name8
name9
name10
[name4, name5, name6, name7, name8, name9, name10]

这是一个有 10,000 个元素的 Stream,但在 short-circuiting 操作 limit 和 skip 的作用下,管道中 map 操作指定的 getName() 方法的执行次数为 limit 所限定的 10 次,而最终返回结果在跳过前 3 个元素后只有后面 7 个返回。

有一种情况是 limit/skip 无法达到 short-circuiting 目的的,就是把它们放在 Stream 的排序操作后,原因跟 sorted 这个 intermediate 操作有关:此时系统并不知道 Stream 排序后的次序如何,所以 sorted 中的操作看上去就像完全没有被 limit 或者 skip 一样。

limit 和 skip 对 sorted 后的运行次数无影响:对上面的代码做了微调,首先对 5 个元素的 Stream 排序,然后进行 limit 操作。

public void testLimitAndSkip() {
    List<Person> persons = new ArrayList();
    for (int i = 1; i <= 5; i++) {
        Person person = new Person(i, "name" + i);
        persons.add(person);
    }
    List<Person> personList2 = persons.stream()
            .sorted((p1, p2) -> p1.getName().compareTo(p2.getName()))
            .limit(2)
            .collect(Collectors.toList());
    System.out.println(personList2);
}
//输出如下
name2
name1
name3
name2
name4
name3
name5
name4
[stream.StreamDW$Person@816f27d, stream.StreamDW$Person@87aac27]

即虽然最后的返回元素数量是 2,但整个管道中的 sorted 表达式执行次数没有像前面例子相应减少。

最后有一点需要注意的是,对一个 parallel 的 Steam 管道来说,如果其元素是有序的,那么 limit 操作的成本会比较大,因为它的返回对象必须是前 n 个也有一样次序的元素。取而代之的策略是取消元素间的次序,或者不要用 parallel Stream。

7、sorted

对 Stream 的排序通过 sorted 进行,它比数组的排序更强之处在于你可以首先对 Stream 进行各类 map、filter、limit、skip 甚至 distinct 来减少元素数量后,再排序,这能帮助程序明显缩短执行时间。

优化上面先sorted后limit的例子:改为排序前进行 limit 和 skip

List<Person> persons = new ArrayList();
for (int i = 1; i <= 5; i++) {
    Person person = new Person(i, "name" + i);
    persons.add(person);
}
List<Person> personList2 = persons.stream()
        .limit(2)
        .sorted((p1, p2) -> p1.getName().compareTo(p2.getName()))
        .collect(Collectors.toList());
System.out.println(personList2);
//输出如下
name2
name1
[stream.StreamDW$Person@6ce253f1, stream.StreamDW$Person@53d8d10a]

当然,这种优化是有 business logic 上的局限性的:即不要求排序后再取值。

8、min/max/distinct

min 和 max 的功能也可以通过对 Stream 元素先排序,再 findFirst 来实现,但前者的性能会更好,为 O(n),而 sorted 的成本是 O(n log n)。同时它们作为特殊的 reduce 方法被独立出来也是因为求最大最小值是很常见的操作。

找出最长一行的长度

BufferedReader br = new BufferedReader(new FileReader("c:\\SUService.log"));
int longest = br.lines()
        .mapToInt(String::length)
        .max()
        .getAsInt();
br.close();
System.out.println(longest);

使用 distinct 来找出不重复的单词:找出全文的单词,转小写,并排序

List<String> words = br.lines()
        .flatMap(line -> Stream.of(line.split(" ")))
        .filter(word -> word.length() > 0)
        .map(String::toLowerCase)
        .distinct()
        .sorted()
        .collect(Collectors.toList());
br.close();
System.out.println(words);

9、Match

Stream 有三个 match 方法,从语义上说:

  • allMatch:Stream 中全部元素符合传入的 predicate,返回 true

  • anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true

  • noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true

它们都不是要遍历全部元素才能返回结果。例如 allMatch 只要一个元素不满足条件,就 skip 剩下的所有元素,返回 false。对清单 13 中的 Person 类稍做修改,加入一个 age 属性和 getAge 方法。

使用 Match

boolean isAllAdult = persons.stream()
        .allMatch(p -> p.getAge() > 18);
System.out.println("All are adult? " + isAllAdult);

boolean isThereAnyChild = persons.stream()
        .anyMatch(p -> p.getAge() < 12);
System.out.println("Any child? " + isThereAnyChild);

参考

:内容来源

五分钟学习Java8的流编程
Java 8 中的 Streams API 详解