way-to-architect
  • 前言
  • Java
    • Java关键字
      • Java中四种修饰符的限制范围
      • static和final
    • 容器
      • 容器概述
        • 容器:综述
        • Iterator原理及实现
        • fast-fail机制
        • 比较器Comparator
        • Collections工具类
      • List
        • List综述
        • ArrayList原理分析
        • ArrayList在循环过程中删除元素的问题
        • 常用的小技巧
        • CopyOnWrite
      • Set
        • Set综述
        • HashSet
        • LinkedHashSet
        • TreeSet
      • Queue
        • Queue综述
        • ArrayBlockingQueue实现原理
        • LinkedBlockingQueue实现原理
        • 高性能无锁队列Disruptor
      • Map
        • Map综述
        • HashMap
          • HashMap实现原理
          • HashMap中的位运算
          • HashMap其他问题
        • LinkedHashMap
        • TreeMap
        • ConcurrentHashMap
          • ConcurrentHashMap实现原理JDK1.7
          • ConcurrentHashMap实现原理JDK1.8
        • ConcurrentSkipListMap
        • Map中key和value的null的问题
    • 线程
      • 线程
        • 创建线程
        • 线程状态及切换
        • 线程中断的理解
        • 几种方法的解释
        • 用户线程与守护线程
        • 线程组ThreadGroup
      • 线程池
        • 线程池工作原理及创建
        • Executor
        • 如何确保同一属性的任务被同一线程执行
      • ThreadLocal
        • ThreadLocal原理
        • ThreadLocal之父子线程传值
        • InheritableThreadLocal
      • 同步与锁
        • 线程安全与锁优化
        • synchronize关键字
        • Lock
          • 队列同步器
            • 同步状态的获取与释放
            • 使用方式
            • 示例:Mutex
            • 示例:TwinsLock
          • 重入锁和读写锁
          • LockSupport
          • Condition
          • 并发工具类
        • CAS
          • CAS的理解
          • Java中原子操作类
        • 3个经典同步问题
      • fork/join的理解
    • I/O
      • I/O概述
        • 磁盘I/O与网络I/O
        • 主要接口
        • 输入流和输出流的使用示例
        • InputStream的重复读
        • BufferdxxxxStream
        • Serailizable
        • File常用方法
        • Files和Path
        • RandomAccessFile
        • 通过零拷贝实现有效数据传输
        • 正确地处理文件
      • NIO基础
      • NIO2
      • Netty
        • Java I/O的演进之路
        • 为什么是Netty
        • 更多
      • I/O调优
    • 异常
      • 异常体系及为什么要有这种异常设计
      • 多catch的执行情况
      • try catch finally 与reture
      • 异常处理的误区
      • Preconditions:方法入参校验工具
    • 枚举
      • 常见用法
      • 枚举类在序列化中的问题
    • 注解
      • 概述
      • Spring中的组合注解的条件注解
      • 常用注解
        • JSR-330标准注解
    • 反射
      • 概述
      • 内部类的反射
      • 反射中需要注意的地方
    • 流程控制
      • switch case without break
      • Java: for(;;) vs. while(true)
    • JVM
      • JVM内存结构
      • Java内存模型
      • 垃圾收集器和内存分配策略
      • 四种引用类型区别及何时回收
      • 类文件结构
      • 类初始化顺序
      • 类加载机制
      • 虚拟机执行引擎
      • 逃逸分析
      • JVM常用配置
      • GC日志分析
      • Java8 JVM 参数解读
      • 垃圾收集器和内存分配策略
    • 面向对象
      • Object类中的方法
      • Class类中的方法
      • 值传递还是引用传递?
      • 接口和抽象类的区别
      • 深拷贝和浅拷贝
      • Integer.parseInt()与Interger.valueof()
      • hashCode()与equal()
      • String
        • String池化及intern()方法的作用
        • 关于字符串
    • 序列化
      • Java序列化的方式有哪些?
    • 新特性
      • 流 Stream
        • Stream是什么
        • Stream API详解
        • Stream进阶
        • 流编程
        • 其他事项
      • lambda表达式
      • 默认方法(Default Methods)
      • @FunctionalInterface注解
    • SPI
      • 理解SPI
    • 字节码
      • javaagent
      • 字节码操纵
      • 如何查看类编译后的字节码指令
      • 字节码指令有哪些
  • Python
    • 异常处理
  • Go
  • 数据结构与算法
    • 数据结构
      • 概述
        • 线性表
        • 栈
        • 队列
        • 串
        • 树
        • 图
      • Java的一些实现
      • 红黑树
      • 双缓冲队列
      • 跳表SkipList
    • 算法
      • 概述
      • 常见算法
        • 基本排序
        • 高级排序
        • 动态规划
  • 框架或工具
    • Spring
      • Spring基础
        • Spring整体架构
        • 什么是IoC
        • Ioc容器的基本实现
        • Spring的MainClass
          • Spring的BeanFactory
          • Spring的Register
          • Spring的Resource和ResourceLoader
          • Spring的PropertySource
          • Spring的PropertyResolver
          • Spring的PropertyEditor
          • Spring的Convert
          • Spring的BeanDefinition
          • Spring的BeanDefinitionReader
          • Spring的BeanDefiniton其他Reader
          • Spring的BeanDefinition其他Reader2
          • Spring的Aware
          • Spring的BeanFctoryPostProcessor
          • Spring的BeanPostProcessor
          • Spring的Listener
        • Xml格式的应用启动
          • Xml格式的应用启动2
          • Xml格式的应用启动3
          • Xml格式的应用启动4
          • Xml格式的应用启动5
          • Xml格式的应用启动6
          • Xml格式的应用启动7
        • Spring中的设计模式
        • 什么是AOP
        • Spring中AOP的实现
      • Spring应用
        • Spring的事务控制
        • @Transactional注解在什么情况下会失效
        • 如何在数据库事务提交成功后进行异步操作
        • Spring中定时任务的原理
    • SpringMVC
      • Controller是如何将参数和前端传来的数据一一对应的
      • 请求处理流程
    • Zookeeper
      • Zookeeper是什么
      • Zookeeper能干啥
    • Shiro
    • druid
    • Netty
    • Consul
      • Consul是什么
    • etcd
    • confd
    • Akka
      • Actor模型是什么
  • 数据库
    • 基本概念
    • MySQL
      • 基本配置
      • MySQL数据类型
      • MySQL存储引擎
      • MySQL事务
        • MySQL事务概念
      • MySQL索引
        • MySQL中的索引类型
        • B-Tree/B+Tree概述
        • 为什么使用B+Tree
        • MySQL中的B+Tree索引
        • MySQL高性能索引策略
      • MySQL查询
        • MySQL查询过程
        • MySQL查询性能优化
        • 使用EXPLAIN
      • MySQL锁
        • MySQL中锁概述
        • InnoDB的并发控制
        • MySQL乐观锁
      • MySQL分库分表
        • 分库/分表
        • 跨库JOIN
        • 跨库分页
        • 分库分表后的平滑扩容
        • 分区表
        • 分布式ID生成方法
      • MySQL实战
        • 在线表结构变更
        • MySQL优化规则
        • MySQL问题排查
        • 常见查询场景
    • Redis
    • Hbase
    • OpenTSDB
    • rrd
    • MongoDB
    • 连接池
  • 系统设计
    • 一致性Hash算法
    • 限流
      • 限流是什么
      • 限流算法
      • 应用内限流
      • 分布式限流
      • 接入层限流
        • ngx_http_limit_conn_module
        • ngx_http_limit_req_module
        • lua_resty_limit-tarffic
      • 节流
    • 降级
      • 降级详解
      • 人工降级开关的实现
      • 自动降级的实现:Hystrix
    • 负载均衡
      • 概述
      • 互联网架构下的负载均衡
      • Nginx负载均衡(七层)
      • Nginx负载均衡(四层)
      • Nginx动态配置
    • 超时与重试机制
      • 什么地方要超时与重试
      • 代理层超时与重试
      • Web容器超时
      • 中间件客户端超时与重试
      • 数据库超时
      • NoSQL客户端超时设置
      • 业务超时
      • 前端请求超时
    • 网关
    • CAP
      • 什么是CAP
      • CAP理解
    • 生产者-消费者模型
      • 使用notify/wait方式
      • 使用await/signal实现
      • 使用阻塞队列实现
      • 使用信号量实现
      • 使用管道流实现
      • 无锁队列Disruptor
      • 双缓冲队列
    • 缓存
      • 缓存概述
      • 数据库缓存
      • 应用缓存
      • 前端缓存
      • 本地缓存
    • 秒杀
    • LRU
  • 版本控制
    • Git
      • Git常用命令
      • 场景命令
    • Svn
  • 计算机操作系统
    • Linux
      • Linux中重要概念
      • 常用命令
      • 查看日志
      • 权限管理
      • 登录或传输
      • 防火墙
      • 配置ssh免密
      • 进程
      • 防火墙
    • Mac
    • 计算机基础
      • 进制
      • Java中的位运算
      • 计算机存储系统结构
  • 网络
    • TCP三次握手和四次挥手
    • 网络术语
      • 网关、路由器、交换机、IP等
      • VLAN
      • LAN
  • 设计模式
    • 设计模式概述
    • 创建型
      • 单例模式
      • 工厂模式
      • 建造者模式
      • 原型模式
      • 享元模式
    • 行为型
      • 观察者模式
      • 策略模式
      • 模板模式
      • 责任链模式
      • 命令模式
      • 外观模式
      • 迭代器模式
      • 中介者模式
        • 中介模式续
      • 状态模式
        • 状态模式实例
        • 状态模式思考
      • 访问者模式
        • 访问者实例1
        • 访问者模式续
    • 结构型
      • 组合模式
        • 组合模式续
      • 装饰模式
        • 装饰模式续
      • 代理模式
      • 备忘录模式
      • 桥接模式
        • 桥接模式实例一
  • 构建工具
    • Maven
      • 常用命令
      • Maven生命周期
      • Maven中的变量和属性
      • 不同环境的如何配置不同的变量
      • 常用插件及配置
      • 其他问题
      • dependencies与dependencyManagement的区别
    • Gradle
  • 大数据
    • Hadoop
    • Storm
    • Spark
  • 服务器
    • Tomcat
      • server.xml配置详解
      • 线程池和连接数配置
      • Maven远程部署
      • 一些小技巧
      • Tomcat类加载机制分析
      • Tomcat的日志
      • Tomcat架构
        • 概述
        • Server 的启动流程
        • 请求处理流程
    • Nginx
      • 常用命令
      • 基本配置
      • Lua
    • Tengine
  • 中间件
    • 任务调度
      • 为什么需要任务调度
    • 消息队列
      • 为什么需要消息队列
      • 消息队列关键点
      • 消息中间件需要解决的问题
      • 不同消息队列产品对比
      • RocketMQ
        • 快速入门
        • 整体架构
        • 部署方式
          • Broker部署方案
        • 客户端使用
          • 客户端使用指南
          • 快速开始
          • 简单示例
          • 有序消息示例
          • 广播消息示例
          • 定时消息示例
          • 批量消息示例
          • 过滤消息示例
          • 日志输出配置示例
        • 关键点实现
          • 顺序消息的实现
        • 最佳实践
          • Broker的最佳实践
          • 生产者最佳实践
            • 生产者最佳实践续
          • 消费者最佳实践
            • 消费者最佳实践续
          • 名称服务最佳实践
          • JVM/kernel配置的最佳实践
          • 新特性 Filter Server
          • 其他事项
      • RabbitMQ
      • Kafka
    • 分布式事务
      • 什么是分布式事务
      • 解决方案
    • 服务治理
      • RPC概念
      • RPC最简实现
      • 为什么需要服务治理
      • Dubbo
        • Dubbo整体架构
      • Java RMI
    • 分布式锁
      • 如何设计分布式锁
        • 基于zookeeper
        • 基于Redis
    • 注册中心
      • 注册中心的职责
      • 不同注册中心的比较
    • 配置中心
      • 概述
      • 配置中心的实现与选型
  • Web开发
    • Http请求类型及区别
    • 常见的content-type
    • 如何处理跨域
    • Restful最佳实践
    • HTTP状态码
    • Http下载原理
  • 测试
    • 压测:apache bench
    • 压测:Jmeter
Powered by GitBook
On this page
  • 使用数据库的auto_increment
  • 单点批量ID生成服务
  • uuid
  • 取当前毫秒数
  • 类snowflake算法
  1. 数据库
  2. MySQL
  3. MySQL分库分表

分布式ID生成方法

几乎所有的业务系统,都有生成一个记录标识的需求,例如:

(1)消息标识:message-id

(2)订单标识:order-id

(3)帖子标识:tiezi-id

(4)链路跟踪中的链路标识:trace-id

这个记录标识往往就是数据库中的唯一主键,数据库上会建立聚集索引(cluster index),即在物理存储上以这个字段排序。

这个记录标识上的查询,往往又有分页或者排序的业务需求,例如:

(1)拉取最新的一页消息:selectmessage-id/ order by time/ limit 100

(2)拉取最新的一页订单:selectorder-id/ order by time/ limit 100

(3)拉取最新的一页帖子:selecttiezi-id/ order by time/ limit 100

所以往往要有一个time字段,并且在time字段上建立普通索引(non-cluster index)。

我们都知道普通索引存储的是实际记录的指针,其访问效率会比聚集索引慢,如果记录标识在生成时能够基本按照时间有序,则可以省去这个time字段的索引查询:

select message-id/ (order by message-id)/limit 100

再次强调,能这么做的前提是,message-id的生成基本是趋势时间递增的。

这就引出了记录标识生成(也就是上文提到的三个XXX-id)的两大核心需求:

(1)全局唯一

(2)趋势有序

这也是本文要讨论的核心问题:如何高效生成趋势有序的全局唯一ID。

使用数据库的auto_increment

使用MySQL数据库自带的 auto_increment 特性来生成全局唯一递增ID,可以保证唯一性、递增性。

但是有单点风险(主库挂掉就无法提供服务),且性能存在上限(依赖单库的写入速度),难以扩展。

改进方法:(1)增加主库,避免写入单点(2)数据水平切分,保证各主库生成的ID不重复

比如,由1个写库变成3个写库,每个写库设置不同的auto_increment初始值,以及相同的增长步长,库0生成0,3,6,9…,库1生成1,4,7,10,库2生成2,5,8,11…。

但这样就丧失了ID生成的“绝对递增性”:先访问库0生成0,3,再访问库1生成1,可能导致在非常短的时间内,ID生成不是绝对递增的(这个问题不大,我们的目标是趋势递增,不是绝对递增)

此外,数据库的写压力依然很大,每次生成ID都要访问数据库。

单点批量ID生成服务

数据库写压力大,是因为每次生成ID都访问了数据库,可以使用批量的方式降低数据库写压力。

数据库中只存储当前ID的最大值Max,当有应用申请获取ID时,ID生成服务每次批量拉取N个ID,并将Max更新为Max+N。

比如,当前数据库中存储的当前ID为10,应用申请50个ID,则ID生成服务将数据库的当前ID设置为60,然后返回给应用(11, 12, 13, ... ..., 60)这50个ID,应用将这50个ID放在自身的内存中,等用完之后再去ID生成服务索要。

这样,可以保证ID生成的绝对递增有序,且大大的降低了数据库的压力,降低为使用数据库的auto_increment方案的1/N。

此时,可能会存在空洞问题,比如上面服务申请了50个ID(11, 12, 13, ... ..., 60)之后,还没有用完(只用了11, 12, ..., 55),自身挂掉了,下次再申请,就会从61开始,那么(56, 57, 58, 59, 60)这些ID就永远也用不到了,不过这个问题也不大,而且服务挂掉的几率也比较小。

但是这种方案,仍然存在性能上限,无法进行水平扩展。且业务方应用需要去调用一次ID生成服务,ID生成服务再去操作数据库,涉及多次远程调用,比较耗时。

uuid

uuid是一种常见的本地生成ID的方法:string ID =GenUUID();

优点:本地生成ID,不需要进行远程调用,时延低;扩展性好,基本可以认为没有性能上限。

缺点:无法保证趋势递增;uuid过长,往往用字符串表示,作为主键建立索引查询效率低,

常见优化方案为“转化为两个uint64整数存储”或者“折半存储”,但折半后不能保证唯一性。所以这种方案很少使用。

取当前毫秒数

uuid是一个本地算法,生成性能高,但无法保证趋势递增,且作为字符串ID检索效率低,有没有一种能保证递增的本地算法呢?

取当前毫秒数是一种常见方案:uint64 ID = GenTimeMS();

因为是使用毫秒,所以,假如两次生成ID的操作是并发在同一毫秒,就会重复;

改进:

(1)使用微秒,但是假如两次生成ID的操作是并发在同一微秒,也会重复;

(2)使用毫秒,如果同一毫秒内有并发生成ID的请求,使用序列号来区分。这中思路其实类似于下面介绍的snowflake算法。

类snowflake算法

其中,41字节的毫秒数,足够系统使用69年;10字节的机器编码,可以最多扩展到1024台机器;12位的毫秒内序列号,可以支持每毫秒4096的并发(每台机器)。

借鉴snowflake的思想,结合各公司的业务逻辑和并发量,可以实现自己的分布式ID生成算法。

举例,假设某公司ID生成器服务的需求如下:

(1)单机高峰并发量小于1W,预计未来5年单机高峰并发量小于10W

(2)有2个机房,预计未来5年机房数量小于4个

(3)每个机房机器数小于100台

(4)目前有5个业务线有ID生成需求,预计未来业务线数量小于10个

(5)…

分析过程如下:

(1)高位取从2016年1月1日到现在的毫秒数(假设系统ID生成器服务在这个时间之后上线),假设系统至少运行10年,那至少需要10年*365天*24小时*3600秒*1000毫秒=320*10^9,差不多预留39bit给毫秒数

(2)每秒的单机高峰并发量小于10W,即平均每毫秒的单机高峰并发量小于100,差不多预留7bit给每毫秒内序列号

(3)5年内机房数小于4个,预留2bit给机房标识

(4)每个机房小于100台机器,预留7bit给每个机房内的服务器标识

(5)业务线小于10个,预留4bit给业务线标识

(1)每个业务线、每个机房、每个机器生成的ID都是不同的

(2)同一个机器,每个毫秒内生成的ID都是不同的

(3)同一个机器,同一个毫秒内,以序列号区区分保证生成的ID是不同的

(4)将毫秒数放在最高位,保证生成的ID是趋势递增的

snowflake算法解决并发的问题仍然是使用序列号,依赖时间,因此每台服务器分配的ID是虽然是绝对递增的,但从全局看,生成的ID只是趋势递增的(有些服务器的时间早,有些服务器的时间晚,TODO,使用NTP解决?)。如果发生时钟回拨,可能会导致可能生成重复id,可以采取“时钟回退后,拒绝生成ID”的策略回避该问题。

最后一个容易忽略的问题:

生成的ID,例如message-id/ order-id/ tiezi-id,在数据量大时往往需要分库分表,这些ID经常作为取模分库分表的依据,为了分库分表后数据均匀,ID生成往往有“取模随机性”的需求(但并不总是如此,需要根据具体业务来判断),所以我们通常把每秒内的序列号放在ID的最末位,保证生成的ID是随机的。

在snowflake中,跨毫秒时序列号总是从0开始,会使得序列号为0的ID比较多,导致生成的ID取模后不均匀。解决方法是,序列号不是每次都从0开始,而是从一个0到9的随机数。

内容来源:

Previous分区表NextMySQL实战

Last updated 6 years ago

snowflake是twitter开源的分布式ID生成算法,其使用一个long型(8字节)数字表示ID,这个ID组成如下:

这样设计的64bit标识,可以保证:

细聊分布式ID生成方法
分布式唯一id:snowflake算法思考
twitter-archivesnowflake/