way-to-architect
  • 前言
  • Java
    • Java关键字
      • Java中四种修饰符的限制范围
      • static和final
    • 容器
      • 容器概述
        • 容器:综述
        • Iterator原理及实现
        • fast-fail机制
        • 比较器Comparator
        • Collections工具类
      • List
        • List综述
        • ArrayList原理分析
        • ArrayList在循环过程中删除元素的问题
        • 常用的小技巧
        • CopyOnWrite
      • Set
        • Set综述
        • HashSet
        • LinkedHashSet
        • TreeSet
      • Queue
        • Queue综述
        • ArrayBlockingQueue实现原理
        • LinkedBlockingQueue实现原理
        • 高性能无锁队列Disruptor
      • Map
        • Map综述
        • HashMap
          • HashMap实现原理
          • HashMap中的位运算
          • HashMap其他问题
        • LinkedHashMap
        • TreeMap
        • ConcurrentHashMap
          • ConcurrentHashMap实现原理JDK1.7
          • ConcurrentHashMap实现原理JDK1.8
        • ConcurrentSkipListMap
        • Map中key和value的null的问题
    • 线程
      • 线程
        • 创建线程
        • 线程状态及切换
        • 线程中断的理解
        • 几种方法的解释
        • 用户线程与守护线程
        • 线程组ThreadGroup
      • 线程池
        • 线程池工作原理及创建
        • Executor
        • 如何确保同一属性的任务被同一线程执行
      • ThreadLocal
        • ThreadLocal原理
        • ThreadLocal之父子线程传值
        • InheritableThreadLocal
      • 同步与锁
        • 线程安全与锁优化
        • synchronize关键字
        • Lock
          • 队列同步器
            • 同步状态的获取与释放
            • 使用方式
            • 示例:Mutex
            • 示例:TwinsLock
          • 重入锁和读写锁
          • LockSupport
          • Condition
          • 并发工具类
        • CAS
          • CAS的理解
          • Java中原子操作类
        • 3个经典同步问题
      • fork/join的理解
    • I/O
      • I/O概述
        • 磁盘I/O与网络I/O
        • 主要接口
        • 输入流和输出流的使用示例
        • InputStream的重复读
        • BufferdxxxxStream
        • Serailizable
        • File常用方法
        • Files和Path
        • RandomAccessFile
        • 通过零拷贝实现有效数据传输
        • 正确地处理文件
      • NIO基础
      • NIO2
      • Netty
        • Java I/O的演进之路
        • 为什么是Netty
        • 更多
      • I/O调优
    • 异常
      • 异常体系及为什么要有这种异常设计
      • 多catch的执行情况
      • try catch finally 与reture
      • 异常处理的误区
      • Preconditions:方法入参校验工具
    • 枚举
      • 常见用法
      • 枚举类在序列化中的问题
    • 注解
      • 概述
      • Spring中的组合注解的条件注解
      • 常用注解
        • JSR-330标准注解
    • 反射
      • 概述
      • 内部类的反射
      • 反射中需要注意的地方
    • 流程控制
      • switch case without break
      • Java: for(;;) vs. while(true)
    • JVM
      • JVM内存结构
      • Java内存模型
      • 垃圾收集器和内存分配策略
      • 四种引用类型区别及何时回收
      • 类文件结构
      • 类初始化顺序
      • 类加载机制
      • 虚拟机执行引擎
      • 逃逸分析
      • JVM常用配置
      • GC日志分析
      • Java8 JVM 参数解读
      • 垃圾收集器和内存分配策略
    • 面向对象
      • Object类中的方法
      • Class类中的方法
      • 值传递还是引用传递?
      • 接口和抽象类的区别
      • 深拷贝和浅拷贝
      • Integer.parseInt()与Interger.valueof()
      • hashCode()与equal()
      • String
        • String池化及intern()方法的作用
        • 关于字符串
    • 序列化
      • Java序列化的方式有哪些?
    • 新特性
      • 流 Stream
        • Stream是什么
        • Stream API详解
        • Stream进阶
        • 流编程
        • 其他事项
      • lambda表达式
      • 默认方法(Default Methods)
      • @FunctionalInterface注解
    • SPI
      • 理解SPI
    • 字节码
      • javaagent
      • 字节码操纵
      • 如何查看类编译后的字节码指令
      • 字节码指令有哪些
  • Python
    • 异常处理
  • Go
  • 数据结构与算法
    • 数据结构
      • 概述
        • 线性表
        • 栈
        • 队列
        • 串
        • 树
        • 图
      • Java的一些实现
      • 红黑树
      • 双缓冲队列
      • 跳表SkipList
    • 算法
      • 概述
      • 常见算法
        • 基本排序
        • 高级排序
        • 动态规划
  • 框架或工具
    • Spring
      • Spring基础
        • Spring整体架构
        • 什么是IoC
        • Ioc容器的基本实现
        • Spring的MainClass
          • Spring的BeanFactory
          • Spring的Register
          • Spring的Resource和ResourceLoader
          • Spring的PropertySource
          • Spring的PropertyResolver
          • Spring的PropertyEditor
          • Spring的Convert
          • Spring的BeanDefinition
          • Spring的BeanDefinitionReader
          • Spring的BeanDefiniton其他Reader
          • Spring的BeanDefinition其他Reader2
          • Spring的Aware
          • Spring的BeanFctoryPostProcessor
          • Spring的BeanPostProcessor
          • Spring的Listener
        • Xml格式的应用启动
          • Xml格式的应用启动2
          • Xml格式的应用启动3
          • Xml格式的应用启动4
          • Xml格式的应用启动5
          • Xml格式的应用启动6
          • Xml格式的应用启动7
        • Spring中的设计模式
        • 什么是AOP
        • Spring中AOP的实现
      • Spring应用
        • Spring的事务控制
        • @Transactional注解在什么情况下会失效
        • 如何在数据库事务提交成功后进行异步操作
        • Spring中定时任务的原理
    • SpringMVC
      • Controller是如何将参数和前端传来的数据一一对应的
      • 请求处理流程
    • Zookeeper
      • Zookeeper是什么
      • Zookeeper能干啥
    • Shiro
    • druid
    • Netty
    • Consul
      • Consul是什么
    • etcd
    • confd
    • Akka
      • Actor模型是什么
  • 数据库
    • 基本概念
    • MySQL
      • 基本配置
      • MySQL数据类型
      • MySQL存储引擎
      • MySQL事务
        • MySQL事务概念
      • MySQL索引
        • MySQL中的索引类型
        • B-Tree/B+Tree概述
        • 为什么使用B+Tree
        • MySQL中的B+Tree索引
        • MySQL高性能索引策略
      • MySQL查询
        • MySQL查询过程
        • MySQL查询性能优化
        • 使用EXPLAIN
      • MySQL锁
        • MySQL中锁概述
        • InnoDB的并发控制
        • MySQL乐观锁
      • MySQL分库分表
        • 分库/分表
        • 跨库JOIN
        • 跨库分页
        • 分库分表后的平滑扩容
        • 分区表
        • 分布式ID生成方法
      • MySQL实战
        • 在线表结构变更
        • MySQL优化规则
        • MySQL问题排查
        • 常见查询场景
    • Redis
    • Hbase
    • OpenTSDB
    • rrd
    • MongoDB
    • 连接池
  • 系统设计
    • 一致性Hash算法
    • 限流
      • 限流是什么
      • 限流算法
      • 应用内限流
      • 分布式限流
      • 接入层限流
        • ngx_http_limit_conn_module
        • ngx_http_limit_req_module
        • lua_resty_limit-tarffic
      • 节流
    • 降级
      • 降级详解
      • 人工降级开关的实现
      • 自动降级的实现:Hystrix
    • 负载均衡
      • 概述
      • 互联网架构下的负载均衡
      • Nginx负载均衡(七层)
      • Nginx负载均衡(四层)
      • Nginx动态配置
    • 超时与重试机制
      • 什么地方要超时与重试
      • 代理层超时与重试
      • Web容器超时
      • 中间件客户端超时与重试
      • 数据库超时
      • NoSQL客户端超时设置
      • 业务超时
      • 前端请求超时
    • 网关
    • CAP
      • 什么是CAP
      • CAP理解
    • 生产者-消费者模型
      • 使用notify/wait方式
      • 使用await/signal实现
      • 使用阻塞队列实现
      • 使用信号量实现
      • 使用管道流实现
      • 无锁队列Disruptor
      • 双缓冲队列
    • 缓存
      • 缓存概述
      • 数据库缓存
      • 应用缓存
      • 前端缓存
      • 本地缓存
    • 秒杀
    • LRU
  • 版本控制
    • Git
      • Git常用命令
      • 场景命令
    • Svn
  • 计算机操作系统
    • Linux
      • Linux中重要概念
      • 常用命令
      • 查看日志
      • 权限管理
      • 登录或传输
      • 防火墙
      • 配置ssh免密
      • 进程
      • 防火墙
    • Mac
    • 计算机基础
      • 进制
      • Java中的位运算
      • 计算机存储系统结构
  • 网络
    • TCP三次握手和四次挥手
    • 网络术语
      • 网关、路由器、交换机、IP等
      • VLAN
      • LAN
  • 设计模式
    • 设计模式概述
    • 创建型
      • 单例模式
      • 工厂模式
      • 建造者模式
      • 原型模式
      • 享元模式
    • 行为型
      • 观察者模式
      • 策略模式
      • 模板模式
      • 责任链模式
      • 命令模式
      • 外观模式
      • 迭代器模式
      • 中介者模式
        • 中介模式续
      • 状态模式
        • 状态模式实例
        • 状态模式思考
      • 访问者模式
        • 访问者实例1
        • 访问者模式续
    • 结构型
      • 组合模式
        • 组合模式续
      • 装饰模式
        • 装饰模式续
      • 代理模式
      • 备忘录模式
      • 桥接模式
        • 桥接模式实例一
  • 构建工具
    • Maven
      • 常用命令
      • Maven生命周期
      • Maven中的变量和属性
      • 不同环境的如何配置不同的变量
      • 常用插件及配置
      • 其他问题
      • dependencies与dependencyManagement的区别
    • Gradle
  • 大数据
    • Hadoop
    • Storm
    • Spark
  • 服务器
    • Tomcat
      • server.xml配置详解
      • 线程池和连接数配置
      • Maven远程部署
      • 一些小技巧
      • Tomcat类加载机制分析
      • Tomcat的日志
      • Tomcat架构
        • 概述
        • Server 的启动流程
        • 请求处理流程
    • Nginx
      • 常用命令
      • 基本配置
      • Lua
    • Tengine
  • 中间件
    • 任务调度
      • 为什么需要任务调度
    • 消息队列
      • 为什么需要消息队列
      • 消息队列关键点
      • 消息中间件需要解决的问题
      • 不同消息队列产品对比
      • RocketMQ
        • 快速入门
        • 整体架构
        • 部署方式
          • Broker部署方案
        • 客户端使用
          • 客户端使用指南
          • 快速开始
          • 简单示例
          • 有序消息示例
          • 广播消息示例
          • 定时消息示例
          • 批量消息示例
          • 过滤消息示例
          • 日志输出配置示例
        • 关键点实现
          • 顺序消息的实现
        • 最佳实践
          • Broker的最佳实践
          • 生产者最佳实践
            • 生产者最佳实践续
          • 消费者最佳实践
            • 消费者最佳实践续
          • 名称服务最佳实践
          • JVM/kernel配置的最佳实践
          • 新特性 Filter Server
          • 其他事项
      • RabbitMQ
      • Kafka
    • 分布式事务
      • 什么是分布式事务
      • 解决方案
    • 服务治理
      • RPC概念
      • RPC最简实现
      • 为什么需要服务治理
      • Dubbo
        • Dubbo整体架构
      • Java RMI
    • 分布式锁
      • 如何设计分布式锁
        • 基于zookeeper
        • 基于Redis
    • 注册中心
      • 注册中心的职责
      • 不同注册中心的比较
    • 配置中心
      • 概述
      • 配置中心的实现与选型
  • Web开发
    • Http请求类型及区别
    • 常见的content-type
    • 如何处理跨域
    • Restful最佳实践
    • HTTP状态码
    • Http下载原理
  • 测试
    • 压测:apache bench
    • 压测:Jmeter
Powered by GitBook
On this page
  • 限制某个接口的时间窗请求数
  • Redis+Lua实现
  • Nginx+Lua实现
  • 总结
  • 内容来源:
  1. 系统设计
  2. 限流

分布式限流

分布式限流最关键的是要将限流服务做成原子化,而解决方案可以使用Redis+Lua或者Nginx+Lua技术来实现。

限制某个接口的时间窗请求数

Redis+Lua实现

我们需要编写一个Lua脚本:

-- 限流脚本
local key = KEY[1] -- 限流KEY(1秒1个)
local limite = tonumber(ARGV[1]) -- 限流大小
local current = tonumber(redis.call("INCRBY",key, "1")) -- 请求数加1
if current > limite then 
    return 0
elseif current == 1 then
    redis.call("EXPIRE", key, "2")
end
return 1

脚本说明(Lua小白必备)

①在Lua脚本中执行Redis命令:redis.call()

②tonumber是Lua的一个函数,这个函数会尝试将它的参数转换为数字

③ARGV[1]表示传递给脚本的第一个参数的值

因为如上操作是在一个Lua脚本中,且Redis是单线程模型,因此是线程安全的。但是上面的脚本有一个问题:当达到限流大小后还是会递增,可以进行如下改造:

-- 限流脚本

local key = KEY[1] -- 限流KEY(1秒1个)
local limite = tonumber(ARGV[1]) -- 限流大小
local current = tonumber(redis.call("GET",key) or "0") -- 之前请求数
if current + 1 > limite then
    return 0
else -- 请求数加1,并设置2秒过期
    redis.call("INCRBY", key, "1")
    redis.call("EXPIRE", key, "2")
    return 1
end

写好lua脚本之后,在Java代码中判断是否需要限流:

public boolean permit() throws IOException {
    String luaScript = Files.toString(new File("limit_v2.lua"), Charset.defaultCharset());
    String key = "ip:" + System.currentTimeMillis() / 1000;
    String limit = "3";
    Long res = (Long) new Jedis().eval(luaScript, Lists.newArrayList(key), Lists.newArrayList(limit));
    return res == 1;
}

因为Redis的限制,不能在Redis Lua中使用TIME获取时间戳,因此只能通过应用传入。在某些情况下(机器时钟不准),限流会存在一些问题。

仔细阅读上述方案,我们不难发现,其实这就是应用级限流中“限制某个接口的时间窗请求数”的翻版,这里将之前的代码贴出来:

public class PeriodCounter {

    /**
     * 每秒限制的请求数
     */
    private final long limit;

    /**
     * 键:当前时间,秒
     * 值:该秒内的累计请求量
     */
    LoadingCache<Long, AtomicLong> secondCounter = CacheBuilder.newBuilder()
            //写入2秒后删除
            .expireAfterWrite(2, TimeUnit.MINUTES)
            .build(new CacheLoader<Long, AtomicLong>() {
                @Override
                public AtomicLong load(Long aLong) throws Exception {
                    //重新获取初始值为0
                    return new AtomicLong(0);
                }
            });

    public PeriodCounter(long limit){
        this.limit = limit;
    }

    public boolean permit() throws ExecutionException {
        while (true){
            //获取当前秒
            long currentSecond = System.currentTimeMillis() / 1000;
            System.out.println(currentSecond);
            if(secondCounter.get(currentSecond).incrementAndGet() > limit){
                return false;
            }else {
                return true;
            }
        }
    }
}

Redis+Lua方案中,Redis其实充当的是缓存角色,Lua脚本只是为了保证判断流程的原子性,与应用内的“限制某个接口的时间窗请求数”的思路是一致的。

Nginx+Lua实现

-- Lua限流脚本:::Nginx版本
local locks = require "resty.lock"
local function permit()
    local lock = locks:new("locks")
    local elapsed, err = lock:lock("limit_key") -- 互斥锁
    local limit_counter = ngx.shared.limit_counter -- 计数器
    local key = "ip:" .. os.time()
    local limit = 5 -- 限流大小
    local current = limit_counter:get(key)

    if current == nil then
        limit_counter:set(key, 1, 1) -- 允许访问,第一次需要设置过期时间
        lock:unlock()
        return 1
    elseif current + 1 > limit then -- 超出限流大小
        lock:unlock()
        return 0
    else -- 允许访问
        limit_counter:incr(key, 1)
        lock:unlock()
        return 1
    end
end
ngx.print(permit())

在上面的脚本中,我们使用了lua-resty-lock互斥锁模块来解决原子问题,并使用ngx.shared.DICT共享字典来实现计数器,所以需要在Nginx的配置中先定义两个共享字典(分别用来存放锁和计数器):

http{
    ... ...
    lua_shared_dict locks 10m;
    lua_shared_dict limit_counter 10m;
}

总结

对于分布式限流,一般都是业务场景需要这种形式的限流;而流量入口的限流则应该在接入层来完成。

内容来源:

《亿级流量网站架构核心技术》:限流详解

Previous应用内限流Next接入层限流

Last updated 6 years ago

从 Redis 2.6.0 版本开始,通过内置的 Lua 解释器,可以使用 命令对 Lua 脚本进行求值。

有人会纠结:如果应用并发量非常大,Redis或者Nginx是否能扛得住?这个问题要从多方面来考虑:流量是不是真的有这么大,是不是当并发量太大时降级为应用级限流。京东目前的抢购业务就是使用Redis+Lua来限流的,详见。

EVAL
京东抢购服务高并发实践